Transport and Kinetics at Carbon Nanotube – Redox Enzyme Composite modified Electrode Biosensors

نویسنده

  • Michael E.G. Lyons
چکیده

A mathematical model describing transport and kinetics of substrate and redox mediator within chemically modified electrodes comprising of redox enzymes immobilized in dispersed carbon nanotube meshes dispersed on support electrode surfaces is described. Two modes of amperometric detection are subjected to analysis. In the first the current arising from re-oxidation of the reduced mediator at the support electrode is measured, whereas in the second the current arising from reduction of the oxidized mediator at the support surface is determined. Approximate analytical expressions for the substrate reaction flux within the nanotube layer are developed and related to the measured flux at the support surface. The kinetics both of substrate and mediator within the layer are also represented in terms of a kinetic case diagram.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transport and Kinetics at Carbon Nanotube –Redox Enzyme Composite Modified Electrode Biosensors Part 2. Redox enzyme dispersed in nanotube mesh of finite thickness

A mathematical model describing the transport and kinetics of substrate and redox mediator in surface deposited films of finite thickness is described. These bio-catalytically active chemically modified electrodes comprise redox enzymes immobilized in a highly dispersed mesh of single walled carbon nanotubes (SWNT) which are in turn immobilized on a support metal surface. A small molecule redox...

متن کامل

Carbon Nanotube Based Modified Electrode Biosensors. Part 1.Electrochemical Studies of the Flavin Group Redox Kinetics at SWCNT/Glucose Oxidase Composite Modified Electrodes

The redox behaviour of glucose oxidase adsorbed on glassy carbon electrodes which have been modified with a dispersed mesh of single wall carbon nanotubes is probed both qualitatively and quantitatively using cyclic voltammetry and potential step chronoamperometry. We have shown that potential step chronoamperometry is the method of choice when conducting kinetic measurements for three reasons....

متن کامل

Direct DNA Immobilization onto a Carbon Nanotube Modified Electrode: Study on the Influence of pH and Ionic Strength

Over the past years, DNA biosensors have been developed to analyze DNA interaction and damage that have important applications in biotechnological researches. The immobilization of DNA onto a substrate is one key step for construction of DNA electrochemical biosensors. In this report, a direct approach has been described for immobilization of single strand DNA onto carboxylic acid-functionalize...

متن کامل

Amperometric glucose sensor based on glucose oxidase immobilized on gelatin-multiwalled carbon nanotube modified glassy carbon electrode.

We investigated the direct electrochemistry of glucose oxidase (GOx) at gelatin-multiwalled carbon nanotube (GCNT) modified glassy carbon electrode (GCE). GOx was covalently immobilized onto GCNT modified GCE through the well known glutaraldehyde (GAD) chemistry. The immobilized GOx showed a pair of well-defined reversible redox peaks with a formal potential (E(0)') of -0.40V and a peak to peak...

متن کامل

Amperometric biosensors based on redox polymer-carbon nanotube-enzyme composites.

Based on their size and unique electrical properties, carbon nanotubes offer the exciting possibility of developing ultrasensitive, electrochemical biosensors. In this study, we describe the construction of amperometric biosensors based on the incorporation of single-walled carbon nanotubes modified with enzyme into redox polymer hydrogels. The composite films were constructed by first incubati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008